
Open-Source Isn’t Free
(Of Charge)…
And Shouldn’t Be
Why a support contract is essential for
your open-source low-code platform.

Brian Fleming

www.planetcrust.com

https://www.planetcrust.com?utm_source=Ebook&utm_medium=Ebook&utm_campaign=Open-Source+Isn%27t+Free
https://www.planetcrust.com?utm_source=Ebook&utm_medium=Ebook&utm_campaign=Open-Source+Isn%27t+Free

Open-source software may
be free to use, modify, and
distribute. But that doesn’t
mean it’s free of charge.

•	 Get an in-depth look at the open-source

business model from both the customer and
vendor perspective

•	 Learn about the open-source paradox and how
it affects your organization

•	 Find out why you should always get a support
contract, especially for open-source low-code
platforms

– Karl Fogel
Partner at Open Tech Strategies, LLC

"In the most common way of
thinking, where ‘free’ means no
upfront cost to use, modify, or
distribute, the answer is yes: the
software is free. That said, if you
lean towards economics and
like to think about the long-term
costs of open source software,
you may have brought to mind
the old adage "There's no such
thing as a free lunch".

Table of contents

Introduction

It’s about much more than getting something for free

The issue of bugs

Reducing the burden of software maintenance and support

Conclusion: A better way to pay for open-source software

The true cost of maintaining open-source software

Ensuring your platform does everything you need it to do

What does this mean for open-source low code platforms?

Sources

The open-source paradox

1

5

8

12

16

6

10

14

17

3

1Introduction

When Finnish software engineer Linus Torvalds released the first
version of the Linux kernel on September 17, 1991, few imagined
it would end up marking a start of a revolution in the software
industry. A month before releasing the new operating system,
Torvalds casually remarked on a Usenet post that he was making a
free operating system that wouldn’t be big and professional like the
GNU, and that it was just a hobby.

As it happened, Torvalds’ hobby gave rise to the open-source
software movement. Today, the internet as we know it couldn’t exist
without open-source software. Linux powers 96.3% of the world’s
top million web servers1, and open-source content management
systems (CMS) like WordPress and Joomla are behind millions
of websites. Even Google Android, which powers around three-
quarters of the world’s mobile devices, is based on a custom Linux
kernel.

Fast-forward to the 2020s, and it’s clear that open-source is the
undisputed future of software. 82% of IT leaders are now choosing
to work with enterprise open-source vendors2. The move away from
proprietary software continues to grow. Even more remarkably, the
growth of open-source is being spearheaded partly by established
software giants such as Microsoft, Amazon, and Google that
had previously relied exclusively on proprietary software to drive
revenue.

Few companies are more emblematic of the great shift in attitude
towards open-source than Microsoft. The software giant, which
once waged a legal battle against open-source, now uses open-
source software itself. Its own cloud computing platform Azure runs
largely on Linux-based data centers. Microsoft has even made its
.NET source code open to the public, and it continues to improve
compatibility with Windows via the Windows Subsystem for Linux.

Concurrent with this recent, broader embrace of open-source,
we are now also seeing the rise of low-code and no-code app
development platforms. These greatly broaden the reach of
software development by saving developers time while also
allowing business technologists to get involved in the development
process. This can significantly reduce the workload on professional
developers, while greatly reducing development times and costs.

Inevitably, there are already several open-source LCDPs on the
market, including Corteza, WebCon, Budibase and Joget. This is no
surprise, given that LCDPs are a natural fit for open-source. After all,

2

when you’re developing apps in a low-code environment, it’s better
to have complete transparency into the underlying code in order
to maintain complete digital sovereignty. With a closed-source
LCDP, by contrast, you end up working in a black box that gives you
limited control and ownership of the software you create and no
view into what’s going on inside it.

The benefits of adopting the open-source model for enterprise
software are many, but it’s also a fact that one of the most common
reasons people choose open-source is because it’s free. However,
that doesn’t necessarily mean that the total cost of ownership is
nothing. In fact, without the right strategy, the TCO of open-source
software can quickly grow out of control.

In this eBook, we’ll explore the reasons for that and how to address
them. In addition to looking at the open-source business model in
general, we’ll discuss:

•	 The true cost of using open-source software in your organization
•	 Why you should have a support contract for your open-source

software
•	 How these matters concern the use of open-source LCDPs

3The open-source paradox

At the heart of the open-source business model lies a central
paradox that can most simply be summed up by the expression,
“You get what you pay for”.

To understand why this is so in the context of software development,
and especially open-source software development, let’s start
by looking at what it takes to develop, support, and host open-
source software or provide consulting services concerning it. We
all know that it costs significant amounts of time, counted in years,
and money, counted in the tens if not hundreds of thousands, to
create any kind of software, never mind enterprise-level software,
regardless of the licensing model it uses. Software development
and engineering require a clear vision, detailed planning, and the
work of highly skilled, and very expensive, employees with skills that
have taken years to acquire.

And creating the software – usually in the form of a minimum
viable product – is just the start. Once launched, the software
needs to be supported, maintained, and continually improved
in line with changing tech trends if it’s going to stay relevant and
useful to customers. Then there’s also the matter of security. In this
era of rapidly rising cyberattacks, software that isn’t adequately
maintained is a favorite target for ransomware, malicious code
injection, and other threats.

To pay for the significant financial and human resources all this
requires, software businesses need to simultaneously attract
customers by letting them trial their software while also creating a
recurring stream of revenue. In the closed-source realm, especially
in the SaaS space, this is achieved either by offering a free trial of
the complete software or by using a freemium model, whereby
you offer basic functionality for free, then charge for the rest. In this
way, if potential customers like the software or like the potential
of its complete features, customers have no choice but to pay to
get what they want. Added to this, if customers want to spend a
few months “playing” with the software, they need to pay for this
privilege, after which point they’ve become locked into the software.

It’s this model that lets closed-source vendors lock-in not only
customers, but also a recurring revenue stream that pays for
improving their software and, consequently, continually pleasing
their existing customers while attracting new ones. Done right, it’s a
continual feedback loop.

This is not so with open-source, where the software and all of its

4

underlying code are available for free. If someone wants to try the
software, they can download it and install it on their own servers
and get full functionality for as long as they want without having
to pay anything. However, that will only get them the software they
need now. But if the creators and developers of the software don’t
have a revenue stream, their business will go under; the software
won’t be supported, won’t see improvements or innovation and
will soon join the ash heap of outdated tech where it will become
useless to the organization that enjoyed using it for free.

This is the open-source paradox. Yes, it’s free, but unless customers
pay to support it, it will soon be useless to them. At the same time,
vendors give their software away for free, but unless they can
convince people to pay to support it, it will soon wither and die. The
problem is that many people think that “open-source” and “free-of-
charge” are one and the same. Sure, the code is free to use, but all
the rest – the support and maintenance, the regular improvements,
the continual innovations – needs to be paid for, either through an
organization’s own, very expensive in-house development team
or by entering into an assurance and support contract for the
software.

5It’s about much more than getting
something for free

The most commonly cited benefit of open-source software is that
it doesn’t cost anything to use. As we saw above, this is patently not
true, because software needs to change over time. But even this is
only a small part of the picture. In reality, open-source is radically
changing the balance of power in the tech space to the benefit of
a far broader range of individuals and organizations than software
vendors alone.

On a geopolitical level, open-source even becomes a tool that
entire nations can leverage to gain independence from the world’s
biggest tech giants, most of which are based in the US. With digital
sovereignty being on the top of the mind in blocs like the EU3, the
crucial role of open-source cannot be understated.

However, on a company level, open-source means having total
control and ownership of applications and data and much of the
infrastructure behind them. As such, organizations can avoid vendor
lock-in and all the restrictions that come with it. With interoperability
and integrability being top priorities when facing increasingly
disparate technology environments, that’s a huge plus. To that end,
open-source is more about freedom than about being free.

6The true cost of maintaining open-source
software

Some business leaders choose open-source software for the sole
reason of reducing costs. In doing so, however, they miss the point
that the open-source model offers many other key benefits, which
they’re highly unlikely to realize if they’re only thinking about the
free aspect. After all, it costs money to maintain the software, and
the cost of doing so internally can easily grow out of control. This is
one of the most common reasons for some businesses to choose
proprietary software instead – they can see the results of the fees
they’re paying with each software release. Of course, if they stop
liking the content of those releases and want to move to a different
platform, they’re stuck; as every business knows, migrating from
one proprietary platform to another comes with a host of technical,
business, and human resource challenges.

The true cost of maintaining open-source software in-house, on the
other hand, can be difficult to quantify. While there are some easily
quantifiable costs, such as hosting and computer power in the case
of cloud-based solutions, others are hard to predict unless you
have long experience as a software developer. For example, what
do you do when you run into a problem with a piece of open-source
software that a mission-critical system depends on? And how do
you support, improve, and innovate the product over time to meet
your changing needs? Doing so requires having a vision of exactly
what those needs will be and which software you will need to meet
them, i.e., a product roadmap. Dealing with these questions is
difficult even for software vendors; you would, in effect, have to build
your own internal software development department.

Even though people are free to download, use, modify, and
distribute open-source software, the free aspect can be fast
rendered irrelevant in the absence of an open-source budgeting
strategy. Because of this, organizations must obtain a complete
understanding of the total cost of ownership (TCO). This is vital
regardless of the software licensing model concerned, yet it’s also
a common oversight in the case of open-source software. The TCO
must include both the direct and indirect costs of the software
throughout its entire lifecycle. While there may be other cost centers
to consider, here are some of the most common:

•	 Freemium functions and features that may not share the same

licensing model
•	 Additional development, testing, and deployment of the software
•	 Hosting, including storage and computer power and any

bandwidth charges
•	 Support and maintenance costs, such as managed services or

7

break/fix contracts
•	 Indirect costs due to unscheduled downtime, such as lost

revenue or productivity
•	 Ongoing training costs, such as bootcamps, workshops, and

seminars
•	 Costs of planned downtime, such as during software upgrades
•	 Any direct or indirect liability costs

Most of the above are unavoidable, regardless of the licensing
model. However, they can be much easier to quantify and predict
for software that is supported by way of managed services.
Businesses should also be wary of software, open-source or
otherwise, that uses a freemium model whereby only certain layers
of the software stack are open-source. Some vendors use both
open and closed source models. For example, popular hypervisor
technology VirtualBox is free and open-source, while its Extension
Pack is premium proprietary software. While this isn’t necessarily
a bad thing, it’s important to take any additional cost factors into
account when working with a blended business model.

Managing risk is another key factor when determining the TCO for
any kind of software. That said, open-source presents some unique
risks. The main tradeoff in open-source software is that it’s provided
for free without any guarantees. While this doesn’t necessarily
mean that using open-source software inherently carries more
risk, it does mean that, in the absence of a third-party support
and maintenance contract, the user must assume all of the risk.
The risks can be offset considerably in the case of open-source
software that has a large and active community behind it but,
again, there are no guarantees.

When choosing open-source software, decision-makers must
factor in the risks involved. The best way to manage these risks
is to break them down into categories, such as security, legal,
operational, business, and reputational. Once the risks have been
identified, the next step is to factor in what they mean to your
business before figuring out how to mitigate them. This is ideally
achieved using a shared responsibility model, which we will discuss
later.

8The issue of bugs

Let’s face it, no software is ever released that doesn’t have bugs,
hence the need for updates and patches. And yet there is often a
perception that proprietary or closed-source code is higher quality
and has fewer bugs compared to open-source code.

This could be for a number of reasons, including the very nature
of open-source versus closed-source software, i.e., the bugs in
open-source software are as freely available to see and find as the
software itself, whereas with closed-source the opposite is the case;
if you can’t look inside the source code, you can’t see the bugs. Or it
could be a function of marketing – it’s no stretch to say that closed-
source software vendors typically have slicker marketing and
tighter messaging and control over information than open-source
software vendors typically do.

Whatever the reason for this perception, it’s false. The reality is that
open-source software is no more and no less buggy or secure
than closed-source. Bugs are simply a fact of software life. Whether
those bugs are found really comes down to the dedication of the
people and teams searching for the bugs, regardless of whether
they’re working in the open-source or closed-source domain.

So, how does this relate to you as a software user?

Firstly, with open-source, you always have the option of digging
into the source code yourself to find and fix any bugs. But for
reasons we’ll discuss below, this isn’t the most efficient nor cost-
effective approach. A smarter, approach is to rely on a support
service provider to prioritize and fix bugs that are critical to you.
This is a level of service that goes far beyond simply supporting,
maintaining, and improving the code and instead focuses on
supporting, maintaining and improving the code so it suits you.

To understand why they would do this, let’s return to the open-
source paradox.

With closed-source software, the cost of general support for and
maintenance of the software, including bug hunting and fixing, is
baked into the price you pay for it. With open-source, it’s not – the
software is free. Bug hunting and fixing is taken up by the general
community, if it’s large enough, or by dedicated developers and
maintainers of the software, be they the original creators or third
parties. These developers and maintainers naturally need to secure
a revenue stream to fund their bug fixing, which they do by offering
support for the software. This leads to a situation where, if every

9

user of open-source software pays for a support contract, everyone
benefits from improved software, while if no one pays, everyone
loses. Moreover, the software stagnates and, ultimately, fossilizes.
Inevitably, there is always someone who thinks, “I don’t need to pay
because someone else will.” But it’s easy to see where this logic will
soon lead – if everyone thinks this way, the software will soon die.

To avoid this happening, open-source vendors often look for
ways to sweeten the pot to attract customers that go far beyond
what closed-source vendors typically include in their support. For
example, closed-source vendors won’t necessarily address or even
care about those critical bugs you care about the most that stand
in the way of you doing what you need to do. This is particularly
grieving when you’re using an LCDP, where a bug may prevent you
from completing an app, workflow, or integration that’s critical to
your operations and stopping your efforts in their tracks with no way
to move forward. At best, a closed-source vendor may put your
bug-fix request on a list of other fixes with no particular priority, or
charge you an arm and a leg for that level of support.

Open-source vendors, on the other hand, are incentivized by the
open-source paradox to offer you prioritized bug fixing, along with
a host of other service offerings that we’ll look at in a bit. The end
result is not only better-quality code, but better-quality software
that will stay with you and improve and innovate over the long run.
But that can only happen if people pay.

10Ensuring your platform does everything
you need it to do

Open-source software is often still viewed as having a significantly
steeper learning curve than closed-source software. For example,
Linux-based operating systems have a reputation of being for tech
professionals and enthusiasts. However, this perception is outdated,
particularly in the case of larger-scale open-source projects that
have large communities supporting them.

That being said, realizing the true potential of open-source software
in terms of the flexibility it offers is often quite a different matter. For
example, anyone with moderate technical skills can design an app
using a platform like Appian or Mendix, but they will only be able to
do so within the confines of those environments, unless they can
change the underlying code. Similarly, anyone might be able to use
the popular Linux distro Ubuntu, but it’s impossible to significantly
alter its functionality without coding.

The same applies to any open-source software, and it doesn’t stop
at coding either. There is user experience design and third-party
integrations to think about, and much more. To ensure that an
open-source platform really does everything you want it to do, you
will need extra help, either in the form of a well-resourced in-house
team or an outsourced consulting and managed services firm. The
more unique and complex your requirements, the more important
that is.

Software is, of course, a vital part of the value stream in any modern
business. This is why it’s essential to start with a detailed analysis of
your business requirements before matching those requirements to
the appropriate solution. Open-source offers another fundamental
advantage here: the open nature of the software means having far
greater flexibility to tailor the platform to a unique and broad range
of needs. By contrast, proprietary software tends to be designed
only for a select few specific use cases and, while it might address
those use cases very well, there are few or no opportunities for
further innovation.

Partnering with a consulting firm when deploying and maintaining
open-source software offers a dependable way to reduce and
gain control over many of the direct and indirect costs that we
mentioned earlier. Most importantly, consulting services will help
you determine how the software in question might be tailored
to meet the precise needs of your business. Moreover, if you feel
that the platform is missing an important feature, you can simply
request that it be developed for you.

11

Even more importantly, consulting services can greatly reduce
the risks associated with open-source software. By helping all
stakeholders get a closer understanding of how the platform would
integrate into their broader technology environments, they will be
better prepared to patch potential security holes, customize user
interfaces, and ensure integration with legacy software and third-
party services. With the right team to help you get the most out
of your open-source software, you can deploy it at less risk, with
greater visibility into implementation costs, and ensure that your
platform is as future-proof as possible.

Finally, teaming up with a consultant can help you mitigate risks
associated with intellectual property rights. While commercial
software tends to come with very clear licensing rules, the same
cannot be said for a lot of open-source software. Often, the
licensing is ambiguous. For example, the popular GNU General
Public License requires the free, unrestricted distribution of the
source code of a modified version of software, even if that source
code is incorporated into proprietary software. This is known
informally as copyleft, which can have implications for companies.
On the other hand, an Apache 2.0 license comes with no such
copyleft requirements. In fact, the Apache 2.0 License lets you:

•	 Use the code or any part of it in your commercial products for

free
•	 Use, modify, distribute, or sell the code or any part of it as you like
•	 Release your modified version of the code under any license of

your choice
•	 Claim copyright over your configuration files and issue binaries

as proprietary software

Furthermore, all the above comes with no obligation to publish your
modified code.

12Reducing the burden of software
maintenance and support

No mission-critical software application can be left unsupported.
Software maintenance costs typically account for around 75% of the
TCO4. This spans corrective, adaptive, and perfective maintenance,
in which software is repaired, modified, or enhanced respectively.
These costs are often hard to budget for too. After all, you never
know when you might need to patch a bug or introduce new
functionality until the last minute. When that happens, the costs can
quickly rack up.

Traditionally, when maintaining any kind of software, organizations
have had to rely entirely on the break/fix support model, a standard
fee-for-service method in the software industry. The problem with
this model, while unavoidable in certain scenarios, is that it’s often
difficult to determine how much a fix or modification will end up
costing. In the case of proprietary software, there’s also the issue
that only an internal team may have the knowledge and experience
required to maintain the software. If such expertise is no longer
available in the organization, there will be no one to effectively
maintain it. Off-the-shelf software, on the other hand, is typically
supported by the vendor but, as we discussed above, things like
bug fixes are often handled at the vendor’s discretion or cost the
customer a premium.

Open-source software, however, comes with multiple support
options. The first option is often to ask the community for a fix,
but there’s no guarantee that the response will be timely enough
or even correct. Most open-source communities have extensive
knowledgebases and forums, where it’s typically easy to find
solutions to recurring issues. If, however, you’re encountering an
issue that hasn’t been addressed before, then it can take much
longer to find a solution. For projects supported by very large
communities, this problem may be significantly offset, but it will
still be a factor. If we’re talking about mission-critical business
software that you simply can’t function without, then that’s a clear
dealbreaker.

Of course, another option might be to address the issue yourself.
However, that requires a suitably staffed internal team with the
resources necessary to solve the problem or implement a new
function within a given timespan. For smaller organizations, which
typically don’t have a fully-staffed team of professional software
developers and engineers, that’s not an option. This may be
different for large enterprises, but even so, they don’t have the
expert knowledge of and experience with the source code that the
developers of the software have. And while they could invest the

13

time and effort to gain that knowledge and experience, they would
likely have to hire additional developers to do so while staying on
top of their current workload.

The most practical option for most organizations embracing open-
source is to have a support contract with a service provider, ideally,
one who is the creator of or at the very least a major contributor
to the project and knows it inside out. With enterprise-grade
support, you’re protected with a service level agreement (SLA) that
guarantees response and resolution times, as well as other areas of
maintenance, such as patching and feature updates. By contrast,
community-based support comes with no SLAs and no guarantees,
and there’s no single, 24/7 point of contact for when something
goes wrong either.

The best things about having a support contract is that: 1) it
provides complete visibility into costs, without the surprise extra
costs that come with relying on the break/fix model; and 2) knowing
that your breaks will be resolved quickly, so you can get on with your
work and that your bugs will be prioritized. These two factors make it
much easier to determine the TCO and budget for the longer term.
The risks are also greatly mitigated thanks to a shared responsibility
model, whereby the service provider assumes most of the risk.
Furthermore, many vendors, including Planet Crust, offer multiple
support tiers, allowing you to choose an option that best suits your
specific requirements and operational environment.

14What does this mean for open-source
low code platforms?

Low code software development platforms (LCDP) greatly reduce
development time and ease the burden of software maintenance
by abstracting much of the software development away from the
underlying code. This is typically achieved using intuitive drag-and-
drop interfaces that allow end-users to quickly implement common
software functions and interface elements without having to resort
to coding.

While there are some open-source LCDPs such as Corteza, which
is developed and maintained by the Planet Crust team, WebCon,
Budibase and Joget, most LCDPs are closed source. For closed-
source LCDPs, you’re not only limited in terms of design flexibility, but
also with regards to how you can use and distribute any apps you
build with the platform. For example, many LCDPs only allow you to
sell apps you make on their own marketplaces, while others might
not even allow you to sell them at all.

Open-source and low code are ideally matched, since the open-
source element ensures that you have complete digital sovereignty
and ownership rights. The low code factor ensures you get to enjoy
many of the advantages of rapid application development (RAD)
in a way that’s accessible to a much wider audience beyond
professional software developers alone.

Naturally, it might sound counterintuitive to pay anything at all to
use an open-source LCDP. After all, if the license is open-source
and the platform is far more accessible than a traditional software
development environment, then why would you need to pay? The
answer to that is, of course, that you don’t need to pay, but there are
some clear benefits to taking out a support contract, including:

•	 Accessing prompt, enterprise-grade support whenever you need

it
•	 Consolidating hosting, storage, and support into a single bill
•	 Understanding your intellectual property requirements and

obligations
•	 Collaborating directly with and supporting the open-source

community
•	 Reducing the risks associated with the break/fix support model
•	 Maintaining control over and visibility into your total cost of

ownership

Beyond this, premium-level support contracts will often allow
you to collaborate directly with developers, provide help with
white labelling, and give you guidance on your intellectual

15

property rights. They will typically also give you access to the core
development team, business analysts, training, and the possibility
of co-developing parts of the software. Furthermore, with a high-
level support contract, you’ll usually have a say in the software’s
roadmap by being able to request features that solve the problems
you need solved. This ensures that the software develops in a
direction that matches the direction your organization is going.

So, yes, open-source software is, by definition, distributed free-of-
charge. But focusing on the free element misses the point that all
software costs time and money to develop, and much of the costs
involved are tied to the ongoing maintenance of the software.
Maintaining software in-house can quickly end up being far more
expensive than having a support contract, which gives you the
services you need for a set monthly fee. In the case of LCDPs, having
a support contract means you can get much more out of the
platform while reducing risk across security, business, legal, and
operational domains.

On top of this, your support contract is helping not only to future-
proof the software, but to future-proof its utility to you. Closed-
source software can’t promise the same at such a granular level,
whereas using open-source software without a support contract
that contributes to its development leaves you at the mercy of
whatever direction the supporters, maintainers, and developers of
the software want to take it in.

16Conclusion: A better way to
pay for open-source software

In the end, having a support contract for your open-source software
is about having a sense of responsibility, particularly in the case of
mission-critical apps in a production environment. If your business
depends on an LCDP for essential functionality for your operations, it
makes sense from any perspective to invest in a support contract. It
provides that vital extra layer of protection and allows you to enjoy
all the benefits of both open-source and low code, such as the
ability to innovate at scale with complete agility.

Looking at the bigger picture, paying for support services supports
the further development of open-source software. For example,
Linux would not exist if it didn’t have its contributors, and the more
influential among those contributors rarely have the inclination nor
the resources to work for free. That’s precisely why major for-profit
companies like Microsoft, Red Hat, and Google are all embracing
the Linux-based kernel to grow their own revenues and contribute to
the broader project. Furthermore, customers also have a say, since
they can request and even co-develop new features.

Planet Crust helps independent software vendors, enterprises, and
public sector organizations power and optimize their business
processes at a fraction of the cost of traditional providers. Our
team is the primary contributor to the Corteza digital work solution,
a low-code platform that facilitates the development of scalable
cloud apps and enterprise-grade CRM systems. We also offer
consulting, customization, and support services to help you get the
most out of the platform. Get started for free today.

https://www.planetcrust.com/get-started?utm_source=Ebook&utm_medium=Ebook&utm_campaign=Open-Source+Isn%27t+Free
https://www.planetcrust.com?utm_source=Ebook&utm_medium=Ebook&utm_campaign=Open-Source+Isn%27t+Free
https://www.planetcrust.com?utm_source=Ebook&utm_medium=Ebook&utm_campaign=Open-Source+Isn%27t+Free

17

Sources

1 https://www.zdnet.com/home-and-office/
networking/can-the-internet-exist-without-linux

2 https://www.redhat.com/en/enterprise-open-
source-report/2022

3 https://www.zdnet.com/article/open-source-
software-is-it-about-free-or-is-it-about-freedom

4 https://galorath.com/software-maintenance-
costs	

www.planetcrust.com

https://www.planetcrust.com?utm_source=Ebook&utm_medium=Ebook&utm_campaign=Open-Source+Isn%27t+Free
https://www.planetcrust.com?utm_source=Ebook&utm_medium=Ebook&utm_campaign=Open-Source+Isn%27t+Free

